Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.866
Filtrar
1.
Curr Issues Mol Biol ; 46(4): 2946-2960, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38666914

RESUMO

Targeting the FLT3 receptor and the IL-1R associated kinase 4 as well as the anti-apoptotic proteins MCL1 and BCL2 may be a promising novel approach in the treatment of acute myeloid leukemia (AML). The FLT3 and IRAK4 inhibitor emavusertib (CA4948), the MCL1 inhibitor S63845, the BCL2 inhibitor venetoclax, and the HSP90 inhibitor PU-H71 were assessed as single agents and in combination for their ability to induce apoptosis and cell death in leukemic cells in vitro. AML cells represented all major morphologic and molecular subtypes, including FLT3-ITD and NPM1 mutant AML cell lines and a variety of patient-derived AML cells. Emavusertib in combination with MCL1 inhibitor S63845 or BCL2 inhibitor venetoclax induced cell cycle arrest and apoptosis in MOLM-13 cells. In primary AML cells, the response to emavusertib was associated with the presence of the FLT3 gene mutation with an allelic ratio >0.5 and the presence of NPM1 gene mutations. S63845 was effective in all tested AML cell lines and primary AML samples. Blast cell percentage was positively associated with the response to CA4948, S63845, and venetoclax, with elevated susceptibility of primary AML with blast cell fraction >80%. Biomarkers of the response to venetoclax included the blast cell percentage and bone marrow infiltration rate, as well as the expression levels of CD11b, CD64, and CD117. Elevated susceptibility to CA4948 combination treatments with S63845 or PU-H71 was associated with FLT3-mutated AML and CD34 < 30%. The combination of CA4948 and BH3-mimetics may be effective in the treatment in FLT3-mutated AML with differential target specificity for MCL1 and BCL2 inhibitors. Moreover, the combination of CA4948 and PU-H71 may be a candidate combination treatment in FLT3-mutated AML.

2.
Int Immunopharmacol ; 133: 112112, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640714

RESUMO

Ovarian cancer ranks as the seventh most prevalent cancer among women and is considered the most lethal gynecological malignancy on a global scale. The absence of reliable screening techniques, coupled with the insidious onset of nonspecific symptoms, often results in a delayed diagnosis, typically at an advanced stage characterized by peritoneal involvement. Management of advanced tumors typically involves a combination of chemotherapy and cytoreductive surgery. However, the therapeutic arsenal for ovarian cancer patients remains limited, highlighting the unmet need for precise, targeted, and sustained-release pharmacological agents. Genetically engineered T cells expressing chimeric antigen receptors (CARs) represent a promising novel therapeutic modality that selectively targets specific antigens, demonstrating robust and enduring antitumor responses in numerous patients. CAR T cell therapy has exhibited notable efficacy in hematological malignancies and is currently under investigation for its potential in treating various solid tumors, including ovarian cancer. Currently, numerous researchers are engaged in the development of novel CAR-T cells designed to target ovarian cancer, with subsequent evaluation of these candidate cells in preclinical studies. Given the ability of chimeric antigen receptor (CAR) expressing T cells to elicit potent and long-lasting anti-tumor effects, this therapeutic approach holds significant promise for the treatment of ovarian cancer. This review article examines the utilization of CAR-T cells in the context of ovarian cancer therapy.

3.
Proc Natl Acad Sci U S A ; 121(17): e2321515121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621128

RESUMO

In this Inaugural Article the author briefly revises its scientific career and how he starts to work with parasitic protozoa. Emphasis is given to his contribution to topics such as a) the structural organization of the surface of protozoa using freeze-fracture and deep-etching; b) the cytoskeleton of protozoa, especially structures such as the subpellicular microtubules of trypanosomatids, the conoid of Toxoplasma gondii, microtubules and inner membrane complex of this protozoan, and the costa of Tritrichomonas foetus; c) the flagellulm of trypanosomatids, that in addition to the axoneme contains a complex network of filaments that constitute the paraflagellar rod; d) special organelles such as the acidocalcisome, hydrogenosome, and glycosome; and e) the highly polarized endocytic pathway found in epimastigote forms of Trypanosoma cruzi.


Assuntos
Eucariotos , Microtúbulos , Masculino , Humanos , Citoesqueleto , Microscopia Eletrônica de Varredura , Axonema
4.
Methods Mol Biol ; 2782: 175-188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38622402

RESUMO

The encounter of T cells with the antigen through the interaction of T cell receptors with peptides and major histocompatibility complex (MHC) molecules on the surface of antigen-presenting cells (APCs) can generate effector response and memory T cells. Memory T cells developed following infections or vaccination may persist, leading to the generation of a specific immune response upon reexposure to the same pathogen through rapid clonal proliferation and activation of effector functions. T cell memory subsets can be identified based on the expression of several membrane markers such as CCR7, CD27, and CD45RA. Using fluorescent antibodies against these markers and a flow cytometer, it is possible to perform immunophenotyping via the analysis of cell surface expression of proteins by different subpopulations such as the subsets of naïve, effector, and memory T cells as well as via the analysis of functional markers that further characterize each sample. Intracellular cytokine staining allows for the evaluation of intracellular proteins expressed in T cells in response to antigenic stimulation. This chapter presents the phenotypic and functional characterization of memory T cells after antigenic stimulation, detailing the procedures for identifying intracellular and surface protein markers. Herein, we review and present a reproducible standardized protocol using antibodies for specific markers and applying flow cytometry.


Assuntos
Linfócitos T CD8-Positivos , Subpopulações de Linfócitos T , Antígenos Comuns de Leucócito/análise , Citocinas , Biomarcadores , Linfócitos T CD4-Positivos , Memória Imunológica , Imunofenotipagem
5.
Int J Antimicrob Agents ; : 107166, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570017

RESUMO

The demand for antibiofilm molecules has increased for several years due to their potential to fight biofilm-associated infections such as those including the interkingdom Staphylococcus aureus - Candida albicans occurring in clinical settings worldwide. Recently, we have identified a pentacyclic triterpenoid compound identified as betulinic acid (BA) from invasive macrophytes with interesting antibiofilm properties. Our study aimed at providing insights into the mechanism of action of BA against the clinically relevant bi-species S. aureus-C. albicans biofilms. Microscopy examinations, flow cytometry and crystal violet assays confirmed that BA was effective for damaging mature S. aureus-C. albicans biofilms or inhibiting their formation, reducing biofilm biomass by 70% on average and without microbicidal activity. Results suggested an action of BA on cell membranes, inducing changes in properties such as composition, hydrophobicity and fluidity as observed in C. albicans, which may hinder the early adhesion step, the biofilm growth and the physical interactions of both microbial species. Further results of real-time PCR argued in favor of a reduction of S. aureus-C. albicans physical interaction due to BA by the modulation of biofilm-related gene expression as observed in early stages of biofilm formation. This study revealed the potential of BA as candidate agent for the prevention and treatment of S. aureus-C. albicans biofilm-related infections.

6.
Res Sq ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585981

RESUMO

Purpose: CD133, a cancer stem cells (CSC) marker, has been reported to be associated with treatment resistance and worse survival in triple-negative breast cancer (BC). However, the clinical relevance of CD133 expression in ER-positive/HER2-negative (ER+/HER2-) BC, the most abundant subtype, remains unknown. Methods: The BC cohorts from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC, n = 1904) and The Cancer Genome Atlas (TCGA, n = 1065) were used to obtain biological variables and gene expression data. Results: Epithelial cells were the exclusive source of CD133 gene expression in a bulk BC. CD133-high ER+/HER2- BC was associated with CD24, NOTCH1, DLL1, and ALDH1A1 gene expressions, as well as with WNT/ß-Catenin, Hedgehog, and Notchsignaling pathways, all characteristic for CSC. Consistent with a CSC phenotype, CD133-low BC was enriched with gene sets related to cell proliferation, such as G2M Checkpoint, MYC Targets V1, E2F Targets, and Ki67 gene expression. CD133-low BC was also linked with enrichment of genes related to DNA repair, such as BRCA1, E2F1, E2F4, CDK1/2. On the other hand, CD133-high tumors had proinflammatory microenvironment, higher activity of immune cells, and higher expression of genes related to inflammation and immune response. Finally, CD133-high tumors had better pathological complete response after neoadjuvant chemotherapy in GSE25066 cohort and better disease-free survival and overall survival in both TCGA and METABRIC cohorts. Conclusion: CD133-high ER+/HER2- BC was associated with CSC phenotype such as less cell proliferation and DNA repair, but also with enhanced inflammation, better response to neoadjuvant chemotherapy and better prognosis.

7.
Mol Ther Oncol ; 32(1): 200762, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38596285

RESUMO

Circulating tumor cells (CTCs) are the seeds of distant metastases of malignant tumors and are associated with malignancy and risk of metastasis. However, tumor cells undergo epithelial-mesenchymal transition (EMT) during metastasis, leading to the emergence of different types of CTCs. Real-time dynamic molecular and functional typing of CTCs is necessary to precisely guide personalized treatment. Most CTC detection systems are based on epithelial markers that may fail to detect EMT CTCs. Therefore, it is clinically important to identify new markers of different CTC types. In this study, bioinformatics analysis and experimental assays showed that trophoblast cell surface antigen 2 (TROP2), a target molecule for advanced palliative treatment of triple-negative breast cancer (TNBC), was highly expressed in TNBC tissues and tumor cells. Furthermore, TROP2 can promote the migration and invasion of TNBC cells by upregulating EMT markers. The specificity and potential of TROP2 as an EMT-associated marker of TNBC CTCs were evaluated by flow cytometry, immunofluorescence, spiking experiments, and a well-established CTC assay. The results indicated that TROP2 is a potential novel CTC marker associated with EMT, providing a basis for more efficacious markers that encompass CTC heterogeneity in patients with TNBC.

8.
Mol Cell Proteomics ; : 100761, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38593903

RESUMO

Glycoproteins located on the cell surface play a pivotal role in nearly every extracellular activity. N-glycosylation is one of the most common and important protein modifications in eukaryotic cells, and it often regulates protein folding and trafficking. Glycosylation of cell-surface proteins undergoes meticulous regulation by various enzymes in the endoplasmic reticulum (ER) and the Golgi, ensuring their proper folding and trafficking to the cell surface. However, the impacts of protein N-glycosylation, N-glycan maturity, and protein folding status on the trafficking of cell-surface glycoproteins remain to be explored. In this work, we comprehensively and site-specifically studied the trafficking of cell-surface glycoproteins in human cells. Integrating metabolic labeling, bioorthogonal chemistry, and multiplexed proteomics, we investigated 706 N-glycosylation sites on 396 cell-surface glycoproteins in monocytes, either by inhibiting protein N-glycosylation, disturbing N-glycan maturation, or perturbing protein folding in the ER. The current results reveal their distinct impacts on the trafficking of surface glycoproteins. The inhibition of protein N-glycosylation dramatically suppresses the trafficking of many cell-surface glycoproteins. The N-glycan immaturity has more substantial effects on proteins with high N-glycosylation site densities, while the perturbation of protein folding in the ER exerts a more pronounced impact on surface glycoproteins with larger sizes. Furthermore, for N-glycosylated proteins, their trafficking to the cell surface is related to the secondary structures and adjacent amino acid residues of glycosylation sites. Systematic analysis of surface glycoprotein trafficking advances our understanding of the mechanisms underlying protein secretion and surface presentation.

9.
Trends Plant Sci ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38594153

RESUMO

To resist biotic attacks, plants have evolved a sophisticated, receptor-based immune system. Cell-surface immune receptors, which are either receptor-like kinases (RLKs) or receptor-like proteins (RLPs), form the front line of the plant defense machinery. RLPs lack a cytoplasmic kinase domain for downstream immune signaling, and leucine-rich repeat (LRR)-containing RLPs constitutively associate with the RLK SOBIR1. The RLP/SOBIR1 complex was proposed to be the bimolecular equivalent of genuine RLKs. However, it appears that the molecular mechanisms by which RLP/SOBIR1 complexes and RLKs mount immunity show some striking differences. Here, we summarize the differences between RLP/SOBIR1 and RLK signaling, focusing on the way these receptors recruit the BAK1 co-receptor and elaborating on the negative crosstalk taking place between the two signaling networks.

10.
mBio ; : e0069324, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38587426

RESUMO

Among genes present in all group A streptococci (GAS), those encoding M-fibril and T-pilus proteins display the highest levels of sequence diversity, giving rise to the two primary serological typing schemes historically used to define strain. A new genotyping scheme for the pilin adhesin and backbone genes is developed and, when combined with emm typing, provides an account of the global GAS strain population. Cluster analysis based on nucleotide sequence similarity assigns most T-serotypes to discrete pilin backbone sequence clusters, yet the established T-types correspond to only half the clusters. The major pilin adhesin and backbone sequence clusters yield 98 unique combinations, defined as "pilin types." Numerous horizontal transfer events that involve pilin or emm genes generate extensive antigenic and functional diversity on the bacterial cell surface and lead to the emergence of new strains. Inferred pilin genotypes applied to a meta-analysis of global population-based collections of pharyngitis and impetigo isolates reveal highly significant associations between pilin genotypes and GAS infection at distinct ecological niches, consistent with a role for pilin gene products in adaptive evolution. Integration of emm and pilin typing into open-access online tools (pubmlst.org) ensures broad utility for end-users wanting to determine the architecture of M-fibril and T-pilus genes from genome assemblies.IMPORTANCEPrecision in defining the variant forms of infectious agents is critical to understanding their population biology and the epidemiology of associated diseases. Group A Streptococcus (GAS) is a global pathogen that causes a wide range of diseases and displays a highly diverse cell surface due to the antigenic heterogeneity of M-fibril and T-pilus proteins which also act as virulence factors of varied functions. emm genotyping is well-established and highly utilized, but there is no counterpart for pilin genes. A global GAS collection provides the basis for a comprehensive pilin typing scheme, and online tools for determining emm and pilin genotypes are developed. Application of these tools reveals the expansion of structural-functional diversity among GAS via horizontal gene transfer, as evidenced by unique combinations of surface protein genes. Pilin and emm genotype correlations with superficial throat vs skin infection provide new insights on the molecular determinants underlying key ecological and epidemiological trends.

11.
J Sci Food Agric ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436580

RESUMO

BACKGROUND: Isomaltulose is a 'generally recognized as safe' ingredient and is widely used in the food, pharmaceutical and chemical industries. The exploration and development of efficient technologies is essential for enhancing isomaltulose yield. RESULTS: In the present study, a simple and efficient surface display platform mediated by a non-yeast signal peptide was developed in Yarrowia lipolytica and utilized to efficiently produce isomaltulose from sucrose. We discovered that the signal peptide SP1 of sucrose isomerase from Pantoea dispersa UQ68J (PdSI) could guide SIs anchoring to the cell surface of Y. lipolytica, demonstrating a novel and simple cell surface display strategy. Furthermore, the PdSI expression level was significantly increased through optimizing the promoters and multi-site integrating genes into chromosome. The final strain gained 451.7 g L-1 isomaltulose with a conversion rate of 90.3% and a space-time yield of 50.2 g L-1 h-1 . CONCLUSION: The present study provides an efficient way for manufacturing isomaltulose with a high space-time yield. This heterogenous signal peptide-mediated cell surface display strategy featured with small fusion tag (approximately 2.2 kDa of SP1), absence of enzyme leakage in fermentation broth and ample room for optimization, providing a convenient way to construct whole-cell biocatalysts to synthesize other products and broadening the array of molecular toolboxes accessible for engineering Y. lipolytica. © 2024 Society of Chemical Industry.

12.
Acta Neuropathol Commun ; 12(1): 39, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454495

RESUMO

Chordomas are clinically aggressive tumors with a high rate of disease progression despite maximal therapy. Given the limited therapeutic options available, there remains an urgent need for the development of novel therapies to improve clinical outcomes. Cell surface proteins are attractive therapeutic targets yet are challenging to profile with common methods. Four chordoma cell lines were analyzed by quantitative proteomics using a differential ultracentrifugation organellar fractionation approach. A subtractive proteomics strategy was applied to select proteins that are plasma membrane enriched. Systematic data integration prioritized PLA2R1 (secretory phospholipase A2 receptor-PLA2R1) as a chordoma-enriched surface protein. The expression profile of PLA2R1 was validated across chordoma cell lines, patient surgical tissue samples, and normal tissue lysates via immunoblotting. PLA2R1 expression was further validated by immunohistochemical analysis in a richly annotated cohort of 25-patient tissues. Immunohistochemistry analysis revealed that elevated expression of PLA2R1 is correlated with poor prognosis. Using siRNA- and CRISPR/Cas9-mediated knockdown of PLA2R1, we demonstrated significant inhibition of 2D, 3D and in vivo chordoma growth. PLA2R1 depletion resulted in cell cycle defects and metabolic rewiring via the MAPK signaling pathway, suggesting that PLA2R1 plays an essential role in chordoma biology. We have characterized the proteome of four chordoma cell lines and uncovered PLA2R1 as a novel cell-surface protein required for chordoma cell survival and association with patient outcome.


Assuntos
Cordoma , Humanos , Cordoma/genética , Cordoma/metabolismo , Proteômica , Membrana Celular/metabolismo , Proteínas de Membrana , Organelas/metabolismo , Organelas/patologia , Receptores da Fosfolipase A2/metabolismo
13.
Methods Mol Biol ; 2777: 1-18, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478332

RESUMO

Despite major advances in health care including improved diagnostic tools, robust chemotherapeutic regimens, advent of precision, adjuvant and multimodal therapies, there is a major proportion of patients that still go on to experience tumor progression and recurrence. Cancer stem cells (CSCs) are shown to be responsible for tumor persistence and relapse. This subpopulation of cancer cells possess normal stem cell like traits of self-renewal, proliferation, and multilineage differentiation. Currently, they are isolated and enriched based on the cell surface markers that can be detected and sorted through fluorescence and magnetic-based cell sorting. In this chapter, we review the current challenges and limitations often encountered in CSC research, including the identification of universal markers, therapy resistance, and new drug development. Current and future perspectives are discussed to address these challenges including utilization of cutting-edge technologies such as next-generation sequencing to elucidate the genome, epigenome, and transcriptome on a single-cell level and genome-wide CRISPR-Cas9 screens to identify novel pathway-based targeted therapies. Further, we discuss the future of precision medicine and the need for the improvement of clinical trial designs.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Transcriptoma
14.
Angew Chem Int Ed Engl ; 63(18): e202319232, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38472118

RESUMO

Cell-surface proteins are important drug targets but historically have posed big challenges for the complete elimination of their functions. Herein, we report antibody-peptide conjugates (Ab-CMAs) in which a peptide targeting chaperone-mediated autophagy (CMA) was conjugated with commercially available monoclonal antibodies for specific cell-surface protein degradation by taking advantage of lysosomal degradation pathways. Unique features of Ab-CMAs, including cell-surface receptor- and E3 ligase-independent degradation, feasibility towards different cell-surface proteins (e.g., epidermal growth factor receptor (EGFR), programmed cell death ligand 1 (PD-L1), human epidermal growth factor receptor 2 (HER2)) by a simple change of the antibody, and successful tumor inhibition in vivo, make them attractive protein degraders for biomedical research and therapeutic applications. As the first example employing CMA to degrade proteins from the outside in, our findings may also shed new light on CMA, a degradation pathway typically targeting cytosolic proteins.


Assuntos
Autofagia Mediada por Chaperonas , Neoplasias , Humanos , Autofagia/fisiologia , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Peptídeos/metabolismo , Lisossomos/metabolismo
15.
Bioresour Technol ; 399: 130539, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458264

RESUMO

Carbonic anhydrase (CA) is currently under investigation because of its potential to capture CO2. A novel N-domain of ice nucleoproteins (INPN)-mediated surface display technique was developed to produce CA with low-temperature capture CO2 based on the mining and characterization of Colwellia sp. CA (CsCA) with cold-adapted enzyme structural features and catalytic properties. CsCA and INPN were effectively integrated into the outer membrane of the cell as fusion proteins. Throughout the display process, the integrity of the membrane of engineered bacteria BL21/INPN-CsCA was maintained. Notably, the study affirmed positive applicability, wherein 94 % activity persisted after 5 d at 15 °C, and 73 % of the activity was regained after 5 cycles of CO2 capture. BL21/INPN-CsCA displayed a high CO2 capture capacity of 52 mg of CaCO3/mg of whole-cell biocatalysts during CO2 mineralization at 25 °C. Therefore, the CsCA functional cell surface display technology could contribute significantly to environmentally friendly CO2 capture.


Assuntos
Dióxido de Carbono , Anidrases Carbônicas , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Técnicas de Visualização da Superfície Celular , Bactérias/metabolismo , Catálise
16.
J Colloid Interface Sci ; 665: 329-344, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38531278

RESUMO

We demonstrate that cytosine moieties within physically cross-linked supramolecular polymers not only manipulate drug delivery and release, but also confer specific targeting of cancer cells to effectively enhance the safety and efficacy of chemotherapy-and thus hold significant potential as a new perspective for development of drug delivery systems. Herein, we successfully developed physically cross-linked supramolecular polymers (PECH-PEG-Cy) comprised of hydrogen-bonding cytosine pendant groups, hydrophilic poly(ethylene glycol) side chains, and a hydrophobic poly(epichlorohydrin) main chain. The polymers spontaneously self-assemble into a reversibly hydrogen-bonded network structure induced by cytosine and directly form spherical nanogels in aqueous solution. Nanogels with a high hydrogen-bond network density (i.e., a higher content of cytosine moieties) exhibit outstanding long-term structural stability in cell culture substrates containing serum, whereas nanogels with a relatively low hydrogen-bond network density cannot preserve their structural integrity. The nanogels also exhibit numerous unique physicochemical characteristics in aqueous solution, such as a desirable spherical size, high biocompatibility with normal and cancer cells, excellent drug encapsulation capacity, and controlled pH-responsive drug release properties. More importantly, in vitro experiments conclusively indicate the drug-loaded PECH-PEG-Cy nanogels can selectively induce cancer cell-specific apoptosis and cell death via cytosine receptor-mediated endocytosis, without significantly harming normal cells. In contrast, control drug-loaded PECH-PEG nanogels, which lack cytosine moieties in their structure, can only induce cell death in cancer cells through non-specific pathways, which significantly inhibits the induction of apoptosis. This work clearly demonstrates that the cytosine moieties in PECH-PEG-Cy nanogels confer selective affinity for the surface of cancer cells, which enhances their targeted cellular uptake, cytotoxicity, and subsequent induction of programmed cell death in cancer cells.


Assuntos
Neoplasias , Polímeros , Nanogéis , Polímeros/química , Sistemas de Liberação de Medicamentos , Polietilenoglicóis/química , Apoptose , Portadores de Fármacos/química , Doxorrubicina/farmacologia , Neoplasias/tratamento farmacológico
18.
Environ Sci Technol ; 58(11): 4872-4883, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38440973

RESUMO

G protein-coupled receptors (GPCRs) are central mediators of cell signaling and physiological function. Despite their biological significance, GPCRs have not been widely studied in the field of toxicology. Herein, we investigated these receptors as novel targets of plastic chemicals using a high-throughput drug screening assay with 126 human non-olfactory GPCRs. In a first-pass screen, we tested the activity of triphenol phosphate, bisphenol A, and diethyl phthalate, as well as three real-world mixtures of chemicals extracted from plastic food packaging covering all major polymer types. We found 11 GPCR-chemical interactions, of which the chemical mixtures exhibited the most robust activity at adenosine receptor 1 (ADORA1) and melatonin receptor 1 (MTNR1A). We further confirm that polyvinyl chloride and polyurethane products contain ADORA1 or MTNRA1 agonists using a confirmatory secondary screen and pharmacological knockdown experiments. Finally, an analysis of the associated gene ontology terms suggests that ADORA1 and MTNR1A activation may be linked to downstream effects on circadian and metabolic processes. This work highlights that signaling disruption caused by plastic chemicals is broader than that previously believed and demonstrates the relevance of nongenomic pathways, which have, thus far, remained unexplored.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Humanos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Ensaios de Triagem em Larga Escala , Polímeros
19.
Bioessays ; : e2400021, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528317

RESUMO

The T/t locus was a major focus of study by mouse geneticists during the 20th century. In the 70s, as the study of cell surface antigens controlling transplantation antigens was taking off, several laboratories hypothesized that alleles of this locus would control cell surface antigens important for embryonic development. One such antigen, the embryonal carcinoma F9 antigen was said to be an example. Other antigens were described on sperm and embryos that were said to be controlled by alleles at the T/t complex. These findings were later found to be false. The history of the findings and their refutation is described.

20.
ACS Appl Mater Interfaces ; 16(13): 15893-15906, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38512725

RESUMO

Polymer-mediated cell surface engineering can be a powerful tool to modify the cell's biological behavior, but a simple ligation strategy must be identified. This manuscript assessed the use of transglutamination as a versatile and adaptable approach for cell surface engineering in various cellular models relevant to biomedical applications. This enzymatic approach was evaluated for its feasibility and potential for conjugating polymers to diverse cell surfaces and its biological effects. Transglutaminase-mediated ligation was successfully performed at temperatures ranging from 4 to 37 °C in as quickly as 30 min, while maintaining biocompatibility and preserving cell viability. This approach was successfully applied to nine different cell surfaces (including adherent cells and suspension cells) by optimizing the enzyme source (guinea pig liver vs microbial), buffer compositions, and incubation conditions. Finally, polymer-mediated cell surface engineering using transglutaminase exhibited immunocamouflage abilities for endothelial cells, T cells, and red blood cells by preventing the recognition of cell surface proteins by antibodies. Employing transglutaminase in polymer-mediated cell surface engineering is a promising approach to maximize its application in cell therapy and other biomedical applications.


Assuntos
Polímeros , Transglutaminases , Animais , Cobaias , Polímeros/metabolismo , Transglutaminases/metabolismo , Células Endoteliais/metabolismo , Membrana Celular/metabolismo , Engenharia Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...